The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidation.
نویسندگان
چکیده
Peroxisomes are important organelles in plant metabolism, containing all the enzymes required for fatty acid beta-oxidation. More than 20 proteins are required for peroxisomal biogenesis and maintenance. The Arabidopsis pxa1 mutant, originally isolated because it is resistant to the auxin indole-3-butyric acid (IBA), developmentally arrests when germinated without supplemental sucrose, suggesting defects in fatty acid beta-oxidation. Because IBA is converted to the more abundant auxin, indole-3-acetic acid (IAA), in a mechanism that parallels beta-oxidation, the mutant is likely to be IBA resistant because it cannot convert IBA to IAA. Adult pxa1 plants grow slowly compared with wild type, with smaller rosettes, fewer leaves, and shorter inflorescence stems, indicating that PXA1 is important throughout development. We identified the molecular defect in pxa1 using a map-based positional approach. PXA1 encodes a predicted peroxisomal ATP-binding cassette transporter that is 42% identical to the human adrenoleukodystrophy (ALD) protein, which is defective in patients with the demyelinating disorder X-linked ALD. Homology to ALD protein and other human and yeast peroxisomal transporters suggests that PXA1 imports coenzyme A esters of fatty acids and IBA into the peroxisome for beta-oxidation. The pxa1 mutant makes fewer lateral roots than wild type, both in response to IBA and without exogenous hormones, suggesting that the IAA derived from IBA during seedling development promotes lateral root formation.
منابع مشابه
The Arabidopsis pxa1 Mutant Is Defective in an ATP- Binding Cassette Transporter-Like Protein Required for Peroxisomal Fatty Acid -Oxidation
Peroxisomes are important organelles in plant metabolism, containing all the enzymes required for fatty acid -oxidation. More than 20 proteins are required for peroxisomal biogenesis and maintenance. The Arabidopsis pxa1 mutant, originally isolated because it is resistant to the auxin indole-3-butyric acid (IBA), developmentally arrests when germinated without supplemental sucrose, suggesting d...
متن کاملPeroxisomal Acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana.
In plants and other eukaryotes, long-chain acyl-CoAs are assumed to be imported into peroxisomes for beta-oxidation by an ATP binding cassette (ABC) transporter. However, two genes in Arabidopsis thaliana, LACS6 and LACS7, encode peroxisomal long-chain acyl-CoA synthetase (LACS) isozymes. To investigate the biochemical and biological roles of peroxisomal LACS, we identified T-DNA knockout mutan...
متن کاملThe human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters.
Peroxisomes play a major role in human cellular lipid metabolism, including the beta-oxidation of fatty acids. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy (X-ALD), which is caused by mutations in the ABCD1 gene. The protein involved, called ABCD1, or alternatively ALDP, is a member of the ATP-binding-cassette (ABC) transporter family and is located in the peroxisomal...
متن کاملThe ABC transporter PXA1 and peroxisomal beta-oxidation are vital for metabolism in mature leaves of Arabidopsis during extended darkness.
Fatty acid beta-oxidation is essential for seedling establishment of oilseed plants, but little is known about its role in leaf metabolism of adult plants. Arabidopsis thaliana plants with loss-of-function mutations in the peroxisomal ABC-transporter1 (PXA1) or the core beta-oxidation enzyme keto-acyl-thiolase 2 (KAT2) have impaired peroxisomal beta-oxidation. pxa1 and kat2 plants developed sev...
متن کاملTransport of fatty acids and metabolites across the peroxisomal membrane.
The peroxisomal membrane forms a permeability barrier for a wide variety of metabolites required for and formed during fatty acid beta-oxidation. To communicate with the cytoplasm and mitochondria, peroxisomes need dedicated proteins to transport such hydrophilic molecules across their membranes. Genetic and biochemical studies in the yeast Saccharomyces cerevisiae have identified enzymes for r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 127 3 شماره
صفحات -
تاریخ انتشار 2001